On Estimation and Selection for Topic Models
نویسنده
چکیده
This article describes posterior maximization for topic models, identifying computational and conceptual gains from inference under a non-standard parametrization. We then show that fitted parameters can be used as the basis for a novel approach to marginal likelihood estimation, via block-diagonal approximation to the information matrix, that facilitates choosing the number of latent topics. This likelihood-based model selection is complemented with a goodness-of-fit analysis built around estimated residual dispersion. Examples are provided to illustrate model selection as well as to compare our estimation against standard alternative techniques.
منابع مشابه
Selection of Appropriate Conversion Model for 137CS Method in Erosion and Sediment Studies In Loess Deposits in North-East of Iran
Soil erosion is one of the effective elements on soil destruction. Many empirical and theoretical models has been developed for soil erosion estimation 137 Cs technique is used as new and accurate method in this case across world. For applying this technique on computing erosion and sediment rate, an appropriate conversion model should be selected. For this propose in this study proportional, m...
متن کاملImprovement of effort estimation accuracy in software projects using a feature selection approach
In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...
متن کاملCREDIBILISTIC PARAMETER ESTIMATION AND ITS APPLICATION IN FUZZY PORTFOLIO SELECTION
In this paper, a maximum likelihood estimation and a minimum entropy estimation for the expected value and variance of normal fuzzy variable are discussed within the framework of credibility theory. As an application, a credibilistic portfolio selection model is proposed, which is an improvement over the traditional models as it only needs the predicted values on the security returns instead of...
متن کاملA Comparison between New Estimation and variable Selectiion method in Regression models by Using Simulation
In this paper some new methods whitch very recently have been introduced for parameter estimation and variable selection in regression models are reviewd. Furthermore , we simulate several models in order to evaluate the performance of these methods under diffrent situation. At last we compare the performance of these methods with that of the regular traditional variable selection methods such ...
متن کاملبهینهسازی روابط دبی جریان و دبی رسوب معلق در ایستگاههای حوزه قرهسو
In this study, using Sediment rating curve models USBR, seasonal model, monthly model, data model based on separating dry and wet seasons, data separation based on flow measurement time (months of low water and high water seasons) and separation of data based on months with no green vegetation and green vegetation] on 6 hydrometric station in Gharesoo River in Golestan Province with aim of se...
متن کاملبرآورد دوزهای هدف با استفاده از روش MCPMod در مطالعات دوز-پاسخ
Background and Objective: Determining adequate model and estimation of target dose with high precision is a key goal in dose-response studies. MCPMod is a new method that used for model selection and estimation of target doses and unlike other methods it does not have any limitation. In this method, selection of models has performed by hypothesis testing also increasing responses that are a cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012